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1. Introduction

In recent years, a great deal of attention has been focussed on the proposed duality between

String Theory on an AdS5×S5 background and a N = 4 supersymmetric Yang-Mills theory

living on the boundary of this space [1]. These theories, while seemingly very different,

have many properties in common, such as global symmetries. Direct comparison of general

states in the two theories is made difficult by the weak/strong coupling nature of the duality,

and for a long time, could only be applied to special states protected by supersymmetry.

More recently, we have been able to apply a variety of tools to study more general states.

In particular, there has been much discussion of integrability on both sides of the du-

altiy in the strict large N limit. Investigation of integrability in the gauge theory began

when Minahan and Zarembo demonstrated that the one loop anomalous dimension oper-

ator, acting on single trace scalar operators, could be interpreted as the Hamiltonian of

an integrable spin chain [2]. Therefore, the anomalous dimensions could be found using a

Bethe ansatz. This work was quickly extended to the full set of single trace operators at

one loop, and has been gradually extended beyond one loop. For some of the work done

on this, see [3]1. At present, no gauge theory calculation of these single trace operators

has contradicted integrability. Moreover, calculations in the gauge theory up to four loops

have been shown to be consistent with integrability.

In the string theory, investigations began with the discovery of a complete set of classi-

cally conserved non-local charges by Bena, Polchinski, and Roiban [5]; further exploration

1Integrable structures in N = 4 SYM theory have also been found at the classical level. See [4].
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of these charges can be found in [6]. Now, a great deal of effort has been put into using the

tools of integrability on both sides of the duality to find and compare states. For example,

operators with large R-charge that can be explored on the gauge theory side using the

Bethe ansatz, are dual to semi-classical strings, allowing for direct numerical comparisons

[7]. The complete set of non-local charges can be used to generate all such states as solu-

tions to integral equations, which can be compared with those found on the gauge theory

side [8]. But of course, the evidence of the structure of integrability itself, on both sides of

the duality, is a compelling new argument in favor of the duality.

Another avenue of exploration has been to discuss whether or not the integrability of

these systems survives various perturbations and extends to other types of operators or

strings. Of particular interest to us has been to explore open strings ending on various types

of D-branes embedded in the AdS5 × S5 space. These are dual to operators that can, in

general, be treated as open spin chains. Although there are other possibilities, in this paper

we will discuss three such situations. In the first, we wrap a D3-brane around an S3 inside

the S5, creating a giant graviton, and discuss the integrability of open strings ending on it.

These giant gravitons appear in the N = 4 gauge theory as baryonic operators, and open

strings ending on them are dual to hybrid operators formed from combining a baryonic-

type of operator with a “word”, a string of fields like those in single-trace operators [9].

In [10, 11] it was shown that these operators can be modeled as open spin chains with the

word forming the bulk of the chain, and the baryonic part of the operator creating the

boundary interactions. Such scalar open spin chains are known to be integrable at one

loop for special, “maximal” giant gravitons. However, for non-maximal giant gravitons

they cannot be solved using a Bethe ansatz, though limited evidence for some other form

of integrability was found.

Another system we will explore is created when a D5-brane is wrapped around an AdS4

inside AdS5 and an S2 inside the S5. In this case, we must add an N = 2 hypermultiplet

of fundamental matter to the N = 4 theory, and we confine this extra matter to a defect in

the 3+1-dimensional space-time. In this case, open strings ending on the D-brane are dual

to operators where a “word” of adjoint matter is sandwiched between two fundamental

fields confined to the defect. Again, such operators can be thought of as open spin chains,

and at one loop and in the scalar sector, they are known to be integrable [12].

Finally, we consider a D7-brane that fills AdS5 and wraps an S2 inside the S5. The

gauge theory dual is also created by adding a N = 2 hypermultiplet to N = 4 SYM. This

description is only valid in the probe-brane limit, where we keep the number of D7-branes

added finite while sending N , the number of D3-branes, to infinity. Outside of this limit,

the branes back-react on the space and destroy the conformal symmetry. An open string

on this D-brane is also described in the gauge theory, at one-loop, by an integrable spin

chain with open boundary conditions [13]. For further work on the integrability of these

three types of open spin chains and their dual open strings, see [14]-[22].

Our goal is to examine, for these three systems, whether or not an analog of the set

of charges generated in [5] can be found. In order to do this, we will start by discussing

how the boundary conditions of putting the 1+1-dimensional system on a finite line affect

the construction of the charges. In the past, charges have been constructed for systems on
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a semi-infinite line, and it turns out to be straightforward to generalize this to the finite

line. This will be demonstrated in section 2. Another important aspect of integrability is

to show that the classically conserved charges are, in fact, in involution. This was done

for the closed string in AdS5 × S5 in [23], and we will show the finite line variation of this

result in section 3. We will find that the existence and involution of these charges then

depend on the specific boundary conditions used for the 1 + 1 dimensional system, which

will vary depending on what types of D-branes we attach our open strings to.

In section 4, we will study an SU(2) sector of open strings ending on the giant gravitons.

We will show that with these boundary conditions, the classical charges can be found

when the giant gravitons are maximal, but that the technique fails for non-maximal giant

gravitons. We will also discuss how this failure relates to the problems with using a Bethe

ansatz for the dual operators. In section 5 we will extend the analysis of maximal giant

gravitons to the full bosonic sector, again verifying classical integrability. In section 6 we

will switch to the D5-brane system, and show that while restricted to an SU(2) sector the

charges do exist, they do not exist for the full bosonic sector. In section 6 we consider the

case of the D7-brane. We show that the full bosonic sector is integrable. In section 7 we

will discuss our conclusions and the open questions we believe still exist.

2. Constructing conserved charges for open strings

Here we will amend the techniques that have been used to find a family of conserved charges

for 1 + 1 dimensional systems on a periodic spatial dimension and for 1 + 1 dimensional

systems on a semi-infinite line to show a technique that produces similar charges on a finite

line2.

This is needed to study the integrability of open strings. We will assume we are

working in the bosonic sector of the worldsheet action for strings in AdS5 × S5. However,

the essential argument does not depend on these details and could be applied quite generally

to integrable systems on a finite line.

The bosonic part of the worldsheet action for a string (either open or closed) in AdS5×
S5 takes the form of the Principal Chiral Model. It is written in terms of the current

j = g−1dg as

S = −
√

λ

8π

∫

Tr(j ∧ ∗j) , (2.1)

where g is an element of the coset SO(4,2)
SO(4,1) ×

SO(6)
SO(5) . This current satisfies

d ∗ j = 0 , (2.2)

2The literature on 1+1 field theories on the half line is quite vast. However, most of the literature deals

with the local conserved charges. Let us point out the papers [24, 25], which study classical open boundary

conditions for the Principal Chiral Model, and general sigma models on symmetric spaces. The review [26]

also discusses the local charges in the context of Yangian symmetries. The procedure used in this paper

to calculate the non-local charges, was first developed in [27] in the context of Affine Toda field theories.

It was latter applied for the O(N) sigma model in [28]. The book [29] contains a nice review and many

references.
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and

dj − j ∧ j = 0 . (2.3)

One must also impose the Virasoro constraints:

Tr(jαjβ) − 1

2
gαβgγδTr(jγjδ) = 0 . (2.4)

Integrability generally hinges on the ability to create a one-parameter family of flat

currents J(x) such that

dJ − J ∧ J = 0 , (2.5)

which we can do by using

J(x) =
1

1 − x2
[j + x ∗ j] . (2.6)

From them, we can construct an infinite set of conserved charges using the usual

Monodromy matrix:

Ω(σ2, σ1;x) = P←−exp

(
∫ σ2

σ1

dσJ1(σ;x)

)

. (2.7)

We have the basic properties,

Ω(σ, σ;x) = 1 , (2.8)

Ω(σ3, σ2;x)Ω(σ2, σ1;x) = Ω(σ3, σ1;x) , (2.9)

Ω(σ1, σ2;x)−1 = Ω(σ2, σ1;x) . (2.10)

Moreover,

∂σ1
Ω(σ1, σ2;x) = J1(σ1;x)Ω(σ1, σ2;x) , (2.11)

∂σ2
Ω(σ1, σ2;x) = −Ω(σ1, σ2;x)J1(σ2;x) , (2.12)

δΩ(σ2, σ1;x) =

∫ σ2

σ1

dσΩ(σ2, σ;x)δJ1(σ;x)Ω(σ, σ1;x) . (2.13)

Using these last relations along with the flatness of J it is easy to prove that,

∂τΩ(σ2, σ1;x) = −Ω(σ2, σ1;x)J0(σ1;x) + J0(σ2;x)Ω(σ2, σ1x) . (2.14)

Therefore, under the periodic boundary conditions of the closed string we have an infinite

family of conserved charges,

∂τTrΩc(x)n = 0 , (2.15)

where Ωc(x) ≡ Ω(2π, 0;x).

Using as inspiration both the techniques of open spin chains, their relationships to

closed spin chains and the methods for producing charges on a semi-infinite line, we suppose

that the correct object to substitute for Ωc(x) would involve an integral that is taken over

the open string from one end to the other, and then back the other direction. We include

matrices κ0,π which represent reflection off the ends of the string. Thus we have the objects

Ω(x) ≡ κ0(x)ΩR(2π, π;x)κπ(x)Ω(π, 0;x) , (2.16)
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where ΩR is constructed with the reflected value of the fields:

(jR)0(σ) = j0(2π − σ), (jR)1(σ) = −j1(2π − σ), (2.17)

and σ ∈ [π, 2π]. We find that the charges Ω(x) will satisfy ∂τTrΩ(x)n = 0 when the

matrices κ0,π satisfy the conditions

∂τκ0(x) − J0(0;x)κ0(x) + κ0(x)(JR)0(0;x) = 0 , (2.18)

∂τκπ(x) − (JR)0(0;x)κπ(x) + κπ(x)J0(0;x) = 0 . (2.19)

Given some asymptotic value of the reflection matrices, say at τ = −∞, the most

general solution to the above equations is,

κ0(τ ;x) = P←−exp

(∫ τ

−∞

dτ ′J0(τ
′, 0;x)

)

κ0(−∞;x)P←−exp

(∫ −∞

τ

dτ ′(JR)0(τ
′, 0;x)

)

,

κπ(τ ;x) = P←−exp

(
∫ τ

−∞

dτ ′(JR)0(τ
′, π;x)

)

κπ(−∞;x)P←−exp

(
∫ −∞

τ

dτ ′J0(τ
′, π;x)

)

.

(2.20)

However, this solution is not acceptable because it is non-local in time and it would

not be possible to compute Poisson brackets with these reflection matrices. Therefore,

we conclude that the reflection matrices must be time independent. This is a significant

constraint since, even if we set ∂τκ = 0 in (2.18), we are not guaranteed that the solution

is time independent since, in general, the matrices J0 and (JR)0 will depend on time.

Using the conformal gauge for the world-sheet metric (which we will maintain for the

duration of this paper), the condition on the reflection matrices becomes

[j0, κ0,π] ± x{j1, κ0,π} = 0 , (2.21)

where for κ0 we have a + sign and the currents are evaluated at σ = 0, while for κπ we have

a − sign and the currents are evaluated at σ = π. Therefore, we can look, without loss of

generality, to the boundary at σ = 0 and get the other reflection matrix by inverting the

sign of x. For the remainder of this paper we will do this, dropping the subscript notation

κ0 → κ and assuming a plus sign in this equation. The question of whether or not open

strings with a particular set of boundary conditions (determined by the configuration of the

D-brane on which they end) have this complete set of conserved charges, can be answered

by exploring whether or not a time-independent solution to equation (2.21) can be found.

3. Canonical structure

We can also explore whether or not the conserved charges found above are in involution.

We will only check this explicitly for open strings in the SU(2) sector. However, for

completeness, we present the general procedure. We will use the conformal gauge from

now on.
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First, we need to find the canonical structure of the model at hand. For the Principal

Chiral Model, it is well known that Poisson brackets of the current J1 can be written in

the r − s formalism introduced by Maillet [30 – 32],

{J1(σ, x)⊗, J1(σ
′, x′)} = r′(σ, x, x′)δ(σ − σ′)

+[r(σ, x, x′), J1(σ, x) ⊗ 1 + 1 ⊗ J1(σ
′, x′)]δ(σ − σ′)

−[s(σ, x, x′), J1(σ, x) ⊗ 1 − 1⊗ J1(σ
′, x′)]δ(σ − σ′)

−[s(σ, x, x′) + s(σ′, x, x′)]δ′(σ − σ′) . (3.1)

The explicit form of the functions r and s depends on the model, but they only depend on

the current j and not on its derivatives. The terms with derivatives on the delta function

are called “Non-Ultra-Local” (NUL).

Using the properties of the transfer matrix, one can easily show that

{Ω(σ1, σ2;x)⊗,Ω(σ′
1, σ

′
2;x

′)} =

∫ σ1

σ2

dσ

∫ σ′

1

σ′

2

dσ′
(

Ω(σ1, σ;x) ⊗ Ω(σ′
1, σ

′;x′)
)

×{J1(σ;x)⊗, J1(σ
′;x)}

(

Ω(σ, σ2;x) ⊗ Ω(σ′, σ′
2;x

′)
)

.

(3.2)

It is well known that the NUL terms in (3.1) produce a discontinuity in (3.2) when any of the

end points σi, σ
′
i coincide. The correct brackets are defined by the Maillet’s regularization

procedure [30 – 32]. We will not go into the details of this which is reviewed in [23]. Here

we will only need the following result [30] (see also [29]),

{Ω(σ1, σ2;x)⊗,Ω(σ1, σ2;x
′)} = ǫ(σ1 − σ2)

[

r(σ1, x, x′)Ω(σ1, σ2;x) ⊗ Ω(σ1, σ2;x
′)

−Ω(σ1, σ2;x) ⊗ Ω(σ1, σ2;x
′)r(σ2, x, x′)

]

, (3.3)

were ǫ(σ) = sign(σ). The consistency of the Poisson Brackets, imply that

0 = {Ω(σ1, σ2;x)⊗,Ω(σ1, σ2;x
′)Ω(σ2, σ1;x

′)}
= (1⊗ Ω(σ1, σ2;x

′)){Ω(σ1, σ2;x)⊗,Ω(σ2, σ1;x
′)}

+{Ω(σ1, σ2;x)⊗,Ω(σ1, σ2;x
′)}(1 ⊗ Ω(σ2, σ1;x

′)). (3.4)

Using (3.3) and (3.4) we get,

{Ω(σ1, σ2;x)⊗,Ω−1(σ1, σ2;x
′)}

= ǫ(σ1 − σ2) [Ω(σ1, σ2;x) ⊗ 1) r(σ2, x, x′)
(

1 ⊗ Ω−1(σ1, σ2;x
′)
)

−
(

1 ⊗ Ω−1(σ1, σ2;x
′)
)

r(σ1, x, x′) (Ω(σ1, σ2;x) ⊗ 1] . (3.5)

It is easy to show that, in conformal gauge, ΩR(2π, π;x) = Ω(0, π;−x). Thus,

Ω(x) ≡ κ0(x)Ω−1(π, 0;−x)κπ(x)Ω(π, 0;x) . (3.6)

Let us now assume that the reflection matrices do not depend on the fields or their deriva-

tives. This is not completely general, but will suffice for the cases examined in this paper.
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Using (3.3) and (3.5), it is a matter of algebra to compute the Poisson brackets of the

transfer matrices (3.6).

The result is that,

{ TrΩ(x), TrΩ(x′)} = 0 , (3.7)

provided that the reflection matrices obey,

[r(0, x, x′), κ0(x) ⊗ κ0(x
′)] +(κ0(x) ⊗ 1)r(0, x,−x′)(1 ⊗ κ0(x

′))

−(1 ⊗ κ0(x
′))r(0, x,−x′)(κ0(x) ⊗ 1) = 0 , (3.8)

with a similar equation for the other boundary. This was the condition found in [28] for

the case of the O(N) model on the half line. Here we see that it also applies in the case of

two boundaries.

If the current j takes value in the Lie algebra su(2), it was shown in [23] that r(σ, x, x′)

takes the simple form,

r(x, x′) =
2π√

λ

x2 + x′2 − 2x2x′2

(x − x′)(1 − x2)(1 − x′2)
(ta ⊗ ta) , (3.9)

where ta are the su(2) generators normalized as Tr(tatb) = −δab. We will come back to

this case in the next sections.

4. An SU(2) sector of open strings ending on giant gravitons

The above analysis gives us a quite general method for exploring whether or not open

strings with a particular set of boundary conditions are integrable. We would now like

to apply this method to a few different cases; this will serve to illustrate the technique

as well as giving us insight into these systems. The first case we will consider is that of

open strings ending on giant gravitons in AdS5 × S5. The giant gravitons (GG) we will

be considering with wrap an S3 inside the S5. They were first explored in [33], and open

strings ending on them have been studied in [11]. Both the GGs themselves and the open

strings ending on them, can be understood in the dual N = 4 super Yang-Mills theory as

a particular type of operator [9], and the integrability of these operators was explored in

[10]. If we write the metric of AdS5 × S5 in terms of global coordinates

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdΩ′2
3 + sin2 θdφ2 + dθ2 + cos2 θdΩ2

3 , (4.1)

then we locate the D3-brane that is the giant graviton at ρ = 0 and θ = θ0, so that it

will wrap the Ω3 3-sphere. The giant graviton then carries angular momentum along the

φ direction, so φ = φ(τ); in fact, we set φ = t. Using

dΩ2
3 = cos2 ψdϕ2 + dψ2 + sin2 ψdη2, (4.2)

the coordinates ϕ, ψ, η, and t parametrize the D-brane. The maximal giant graviton

(MGG) has θ0 = 0.
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To simplify matters we will only consider an SU(2) sector to begin with. Here we will

find it easiest to amend the form of the action (2.1) to read

S = −
√

λ

4π

∫
[

1

2
Tr(j ∧ ∗j) + dt ∧ ∗dt

]

, (4.3)

where j = −g−1dg and

g =

(

Z Y

−Ȳ Z̄

)

∈ SU(2) , (4.4)

where |Z|2 + |Y |2 = 1. In terms of the coordinates of the 5-sphere given above, we have

Z = sin θeiφ, Y = cos θeiϕ. (4.5)

(Choosing the SU(2) sector involves restricting the string to ρ = 0 and ψ = 0 everywhere

on the string.)

We will also need to use the boundary conditions for these strings. Keeping in mind

that we need δφ = δt at the boundary, variation of the action gives us
∫

dτ
√−ggσα

[

δt(−∂αt + sin2 θ0∂αφ) + δϕ cos2 θ0∂αϕ
]

|σ=π
σ=0 = 0 . (4.6)

Therefore, at each boundary we need,

(−t′ + sin2 θ0φ
′) = 0 , (4.7)

ϕ′ = 0 . (4.8)

We are using the notation that f ′ and ḟ stand for derivatives of the function f(τ, σ) with

respect to σ and τ respectively. Note that, as opposed to the case of the closed string,

the EOM of t is not completely decoupled from the rest of the coordinates. Therefore, in

general we do not have the simple solution t ∼ τ .

Now, lets consider what condition (2.21) will give us. In the SU(2) sector we can sim-

plify matters by expressing the current j and the reflection matrix κ as linear combinations

of sigma matrices and the 2 × 2 identity matrix:

jα = ja
ασa, κ = κ0I + κaσa (4.9)

in which case we can use the familiar identities [σa, σb] = 2iǫabcσc and {σa, σb} = 2δabI to

rewrite (2.21) as










0 xj1
1 xj2

1 xj3
1

xj1
1 0 −ij3

0 ij2
0

xj2
1 ij3

0 0 −ij1
0

xj3
1 −ij2

0 ij1
0 0





















κ0

κ1

κ2

κ3











≡ M~κ = 0. (4.10)

It is clear that in order for this equation to have a non-trivial solution we need detM = 0.

It is straightforward to demonstrate that this implies Tr(j0j1) = 0. In addition, because

we need κ̇ = 0, we also must have detṀ = 0. This gives Tr(∂0j0∂0j1) = 0. The first of

these conditions implies that

sin2 θ0 φ̇ φ′ = 0. (4.11)
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This condition is always satisfied for the MGG.

In this case, one can show that the only possible time independent reflection matrix is

given by,

κMGG ∝ σ3 . (4.12)

Using

[σa ⊗ σa, σ3 ⊗ σ3] = 0 , σ3σa ⊗ σaσ3 − σaσ3 ⊗ σ3σa = 0 , (4.13)

one can show that the condition (3.8) is indeed satisfied. Therefore, the conserved charges

are in involution for an SU(2) open string on a MGG.

On the other hand, for non-maximal GGs (θ0 6= 0), one clearly has an extra condition

on the string at the boundaries: φ′ = 0. Thus, open strings ending on giant gravitons will

not, in general, be proven integrable by this method. Even assuming assuming φ′ = 0 at

the boundary, detM = 0 gives an additional condition:

cos θ0 sin θ0(ϕ̇ − φ̇)
[

θ′(ϕ̈ + φ̈) − θ̇′(ϕ̇ + φ̇)
]

= 0. (4.14)

This condition is not implied by either the EOMs or the Virasoro constraints.

The condition φ′ = 0 at the string boundary has an interesting physical meaning.

We know that for the closed string there are conserved charges associated with left- and

right-multiplication of an element of SU(2). These would be

QR =

√
λ

4π

∫

γ

∗j , QL =

√
λ

4π

∫

γ

∗(gjg−1) , (4.15)

where γ is any closed curve winding once around the world-sheet. Because they are con-

served classically, we can focus on just the ‘highest weight’ solutions with

QR =
1

2i
Rσ3, QL =

1

2i
Lσ3, R, L ∈ R+. (4.16)

In contrast, the analogous charges are not both conserved for general open strings. In this

case, we have

∂τQR =

√
λ

4π
(∗j)0|σ=π

σ=0 , (4.17)

and

∂τQL =

√
λ

4π
[∗(gjg−1)]0|σ=π

σ=0 . (4.18)

Then, it is easy to show that

∂τ (L + R) = −
√

λ

π
sin2 θ0 φ′|σ=π

σ=0 , (4.19)

∂τ (L − R) = 0 . (4.20)

The non-conservation of L + R for these open strings reflects the way that the open string

is dragged behind the giant graviton and the two objects can exchange angular momentum

[11]. In the gauge theory dual, it was shown that this requires that the dual open spin

chain is not of fixed length and cannot be solved by a simple Bethe ansatz. Note that in
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the special case of the maximal giant graviton θ0 = 0 no such problem exists, as L + R is

conserved and the dual spin chains do not change length and can be solved using a Bethe

ansatz (at least at one loop).

Now we see that the condition φ′ = 0 at the boundary corresponds to requiring,

by hand, that the quantity R + L is conserved and thus that angular momentum is not

being exchanged between the open string and the giant graviton. The same feature that

provides an obstacle to integrability in the dual open spin chains is standing in our way

here. However, the second condition (4.14) demonstrates that φ′ = 0 by itself is not a

good enough constraint to give us this construction of charges. We could solve the problem

by adding the requirement φ = t = ±ϕ at the boundaries, which corresponds to the

endpoints of the string following null geodesics along the giant graviton. Alternatively,

we could consider an “extremal giant graviton” with θ0 = π
2 along with the boundary

condition φ′ = 0. But these are all extremely restrictive constraints, so it is clear that the

general open string ending on a non-maximal giant graviton cannot be demonstrated to

be integrable by this approach. On the other hand, our failure to find a complete set of

non-local conserved charges by this technique is not sufficient to demonstrate that these

open strings are not integrable.

5. The full bosonic sector for open strings ending on MGGs

In the previous section, we showed that in the SU(2) sector, open strings ending on MGGs

are classically integrable. Here we would like to extend the analysis, just for the MGGs,

to the full bosonic sector.

For the full bosonic model, we consider the coset

AdS5 × S5 =
SO(4, 2)

SO(5, 1)
× SO(6)

SO(5)
. (5.1)

One can embed and element ga of the coset SO(4, 2)/SO(5, 1) into the group SU(2, 2) which

is locally isomorphic to SO(4, 2). Similarly, we can embed an element gs of SO(6)/SO(5)

into SU(4) which is isomorphic to SO(6). The embedding is the following [34]:

g =

(

gA 0

0 gS

)

, (5.2)

where,

gA =











0 Z3 −Z2 Z̄1

−Z3 0 Z1 Z̄2

Z2 −Z1 0 −Z̄3

−Z̄1 −Z̄2 Z̄3 0











, gS =











0 Y1 −Y2 Ȳ3

−Y1 0 Y3 Ȳ2

Y2 −Y3 0 Ȳ1

−Ȳ3 −Ȳ2 −Ȳ1 0











. (5.3)

Since gA obeys SU(2, 2) it satisfies,

g†AEgA = E , E = diag(−1,−1, 1, 1) . (5.4)

Analogously, g†SgS =
∑

i |Yi|2 = 1. Moreover,

−|Z3|2 + |Z1|2 + |Z2|2 = −1 . (5.5)
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We can parametrize AdS5 × S5 as,

Z1 = sinh ρξ1 , Z2 = sinh ρξ2 , Z3 = cosh ρeit ,

Y2 = cos θΩ2 , Y3 = cos θΩ3 , Y1 = sin θeiφ , (5.6)

where
∑

i |ξi|2 = 1 and
∑

i |Ωi|2 = 1.

The boundary conditions for the MGG are: ρ = 0, θ = 0, φ = t, and Neumann in the

other directions. (Note that the complication in the boundary condition (4.7) is removed

by restricting to the maximal giant graviton.)

Given the form of the group element g, we can take the reflection matrices as,

κ =

(

κA 0

0 κS

)

. (5.7)

Therefore we can separate the problem in the AdS5 and S5 part. The AdS currents jA at

the boundaries are,

(jA)0 = i∂0t diag(1, 1,−1,−1) , (5.8)

(jA)1 = iρ′

(

0 A

−A† 0

)

, (5.9)

where,

A = ieit

(

ξ̄1 ξ2

ξ̄2 −ξ1

)

∈ SU(2) . (5.10)

Therefore it is very easy to see that, just like in the SU(2) case, we can satisfy Eq. (2.21)

if we take κA along (jA)0. That is,

κA ∝ diag(1, 1,−1,−1) . (5.11)

The S5 looks a little messier but also has a simple solution. We have,

(jS)0 =
3

∑

a=1

(

αaσa 0

0 βaσa

)

, (5.12)

where

α1 = Ω̇2Ω̄2 + Ω3
˙̄Ω3 , β1 = Ω̇2Ω̄2 + Ω̄3Ω̇3 , (5.13)

α2 = −iRe(Ω2
˙̄Ω3 − Ω̄3Ω̇2) , β2 = −iRe(Ω2Ω̇3 − Ω3Ω̇2) , (5.14)

α3 = iIm(Ω2
˙̄Ω3 − Ω̄3Ω̇2) , β3 = iIm(Ω2Ω̇3 − Ω3Ω̇2) . (5.15)

Moreover,

(jS)1 = iθ′

(

0 B

−B† 0

)

, (5.16)

where,

B = ieiX0

(

Ω̄3 Ω2

Ω̄2 −Ω3

)

∈ SU(2) . (5.17)

Again, κS ∝ diag(1, 1,−1,−1) will do the trick. Clearly, the classical integrability of

open strings ending on maximal giant gravitons is valid for the entire bosonic sector.
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6. The bosonic sector for open strings ending on D5-branes

We can obtain a different set of boundary conditions for our open strings by attaching

them to D5-branes, arranged so that the brane wraps an AdS4 inside the AdS5, and an S2

inside the S5. We will stay in the probe brane limit for this calculation, neglecting the back

reaction of the D-branes on the spacetime. However, the gauge theory results of one-loop

integrability for the dual open spin chains made no distinction between this limit and the

more general situation where the number of D5-branes is comparable to the number of

D3-branes. We will study the bosonic sector of open strings attached to this brane using

the same set up as in the previous section. Therefore, the starting point is a matrix g in

the block diagonal form of (5.2).

Now, the form of gS we want to use is the same as that given in (5.3), except we will

use angular coordinates defined as

Y1 = X1 + iX2, Y2 = X3 + iX4, Y3 = X5 + iX6 , (6.1)

with

X1 = cos θ cos ϕ cos η ,

X2 = cos θ cos ϕ sin η ,

X3 = cos θ sinϕ ,

X4 = sin θ sinψ ,

X5 = sin θ cos ψ cos ξ ,

X6 = sin θ cos ψ sin ξ . (6.2)

The brane is located at θ = 0, so the variables ϕ and η satisfy Neumann boundary

conditions, while θ satisfies Dirichlet boundary conditions. Note that an SU(2) sector is

achieved by requiring ϕ = ψ = 0 along the whole string (so all derivatives of these variables

are also zero).

We can calculate that

jS,0 =

(

f gσ1

−ḡσ1 −f

)

, (6.3)

with

f = i cos2 ϕ η̇ , (6.4)

and

g = eiη(ϕ̇ − i sin ϕ cos ϕ η̇) , (6.5)

while

jS,1 = θ′

(

αaσa β0I + βaσa

γ0I + γaσa δaσa

)

. (6.6)

– 12 –



J
H
E
P
0
4
(
2
0
0
7
)
0
6
5

These variables are not all independent:

α3 = δ3 = i sin ϕ sin ψ ,

α2 = δ2 = i sin ϕ cos ψ cos ξ ,

α1 = −δ1 = −i sinϕ cos ψ sin ξ ,

β0 = −γ̄0 = −i cos ϕ cos ψ sin ξeiη ,

β3 = −γ̄3 = cos ϕ cos ψ cos ξeiη ,

β1 = γ1 = 0 ,

β2 = −γ̄2 = − cos ϕ sin ψeiη . (6.7)

It is clear that if a general string ending on the D5-brane is to be integrable, we must have

[jS,0, κS ] = 0 and {jS,1, κS} = 0 separately, because otherwise we can not have θ′ and η̇

and ϕ̇ independent. (The EOM do not give any natural relations between these at the

boundary.) Considering the first condition, and making

κS =

(

A B

C D

)

, (6.8)

we find that

[jS,0, κS ] =

(

gσ1C + ḡBσ1 2fB + g(σ1D − Aσ1)

2fC + ḡ(Dσ1 − σ1A) −ḡσ1B − gCσ1

)

. (6.9)

In order for this to vanish, we need C = B = 0 and σ1D−Aσ1 = Dσ1 −σ1A = 0. In turn,

if we write A = a0I + aaσa and D = d0I + daσa, then this gives us

a0 = d0, a1 = d1, a2 = −d2, a3 = −d3. (6.10)

Furthermore, we find that

{jS,1, κS} = (6.11)











2a0αaσa + 2αaaaI 2a0(βaσa + β0I)

+2(β0a1 − iβ2a3 + iβ3a2)σ1

2a0(γaσa + γ0I)

+2(γ0a1 + iγ2a3 − iγ3a2)σ1 2d0δaσa + 2δadaI











.

This can be made to vanish if we set a0 = 0 and have

a1 cos ψ sin ξ − a2 cos ψ cos ξ − a3 sin ψ = 0 . (6.12)

The problem is that the variables ψ and ξ are not necessarily constant in time because

they express the direction the string moves off in as it leaves the D-brane. Thus there is

no way to define a non-trivial κS that is independent of time.

If we were to limit down to an SU(2) sector, this solves the problem by restricting the

direction that the string can move off in as it leaves the D-brane: specifically, if ψ = 0 then

– 13 –



J
H
E
P
0
4
(
2
0
0
7
)
0
6
5

a1 = a2 = 0 is a valid solution. Thus we conclude that a non-trivial κS is possible for an

SU(2) subsector.

One can also show that there are no non-trivial solutions for κA. To see this, we can

parameterize gA in (5.3) using the Poincaré patch as in [35]. Namely,

Z1 = Z1 + iZ2 , Z2 = Z3 + iZ4 , Z3 = Z0 + iZ5 , (6.13)

where

Z0 =
1

2

(

eφ + 2(xx̄ + x+x−)eφ + e−φ
)

, Z5 =
eφ

√
2
(x+ − x−) ,

Z1 =
1

2

(

eφ − 2(xx̄ + x+x−)eφ − e−φ
)

, Z2 =
eφ

√
2
(x+ + x−) ,

Z3 =
eφ

√
2
(x + x̄) , Z4 = −i

eφ

√
2
(x − x̄) , (6.14)

and,

x± =
1√
2
(x3 ± x0) , x =

1√
2
(x1 + ix2) , x̄ =

1√
2
(x1 − ix2) . (6.15)

The AdS5 metric in these coordinates is given by,

ds2 = e2φηµνdxµdxν + dφ2 , (6.16)

so that the D5-brane is located at x3 = 0, and all other coordinates have Neumann bound-

ary conditions.

In this case we find that

jA,a = −g−1
A ∂agA =

(

−1
2 ∂aφ 0

−ieφ∂a(x0I + x1σ3 + x2σ1 + x3σ2)
1
2∂aφ

)

, (6.17)

so that at the boundary of the open string we have

jA,1 =

(

0 0

−ix′
3e

φ 0

)

, (6.18)

and

jA,0 =

(

−1
2 φ̇I 0

−ieφ(ẋ0I + ẋ1σ3 + ẋ2σ1)
1
2 φ̇I

)

. (6.19)

Now, if we need to satisfy {κA, jA,1} = [κA, jA,0] = 0 for some

κA =

(

A B

C D

)

, (6.20)

then it is straightforward to verify that, barring any further restrictions on the AdS coor-

dinates, we need the conditions

A = D, B = C = 0, {A,σ2} = 0, [A,σ3] = 0, [A,σ1] = 0 (6.21)
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which can not all be satisfied. It is therefore not possible to generate a working κA or

a working κS . One should note that were it possible to generate one, but not the other,

we would be able to produce an infinite set of non-local charges by setting the other

part of the reflection matrix to zero. However, this would result in charges that were

completely independent of motion either on the AdS5 or on the S5; these would not suggest

integrability because they would not be complete. For example, we would not be able to

use these charges to generate all classical solutions using the algebraic curve method.

Again, if we restrict ourselves to the SU(2) sector, the string will be located at the

origin of AdS in global coordinates. This is the same boundary condition as with the MGG.

Therefore, using the global coordinates, we have the solution κA ∝ diag(1, 1,−1,−1).

Now, in the gauge theory the SU(2) sector is closed to all orders, and we know that it

is integrable at one loop. This suggests that possibly the open string in an SU(2) sector

attached to these D-branes might satisfy exact integrability. As mentioned earlier, the

gauge theory result of integrability was independent of the number of D5-branes used.

Therefore, a possible next step would be to examine the SU(2) sector of these open strings

away from the probe limit, where they would more in a more complicated background.

What is interesting is that in the full bosonic sector, in contrast with the results for the

giant gravitons, here we have a disagreement between the results of the one loop gauge

theory calculations and the classical string results. The one loop gauge theory calculation

indicated integrability in the full bosonic sector [12]. Based on the large λ result from the

string theory, it seems unlikely this result would extend to higher loops.

To close this section, let us check that the conserved charges are in involution for the

SU(2) sector. For this, we note that the problem is exactly the same as with the MGG.

We can use the embedding (4.5), but now with φ′ = 0 at the boundaries. However, this

change does not matter since, in these coordinates, the D5-brane is at θ0 = 0. Therefore,

we get exactly the same reflection matrix κ ∝ σ3 which we know satisfy the constraints

(3.8). We conclude that the conserved charges for the SU(2) sector of these open stings

are also in involution.

7. Bosonic sector for strings ending on D7-branes

In this section, we consider the case of a D7-brane that wraps an AdS5×S3 spacetime. The

holographic dual is N = 4, SU(N) SYM theory in which we add one N = 2 hypermultiplet

of fundamental matter. The integrability of this system was studied in [13]. Conformal

symmetry is only present in the strict large N limit, which corresponds to the probe brane

limit. As in the case of the D5-brane, this is the limit that we study in this paper.

The one-loop open spin chain describing the SO(6) scalar fluctuations of the D7-brane

was shown to be integrable in [13]. For the corresponding classical open strings, we now

show that the full bosonic sector is also integrable.

As before, we can separate the reflection matrix in the AdS part (κA) and the S5 part

(κS). Since the D7-brane fills the AdS5 space, all of the coordinates in these directions

have Neumann boundary conditions. Therefore, we have that

jA,1 = −g−1
A ∂1gA = 0 , (7.1)
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at the boundaries of the open string. The condition (2.21) becomes simply [jA,0, κ] = 0.

Since we do not have any further restrictions for jA,0, we may choose κ ∝ 1. On the other

hand, κS will need to obey similar conditions as for the MGG. Using the angular coordinates

established in section 5, we locate the brane at θ = 0, with Ω2 and Ω3 satisfying Neumann

boundary conditions. Following through, we get the same block structure for the matrices

jA,0 and jA,1 as for the MGG, and we thus have the same solution κS ∝ diag(1, 1,−1,−1).

Therefore, in this case we have found that the classical open strings are integrable. This

suggests that the underlying spin chain on the gauge theory side might be integrable to all

loops.

Finally, let us mention that if we restrict the string to the SU(2) sector, we get exactly

the same problem as with the MGG. Thus, the charges will also be in involution.

8. Discusssion

In this paper, we have developed a technique to construct non-local conserved charges for

classical open strings on coset spaces. The procedure was adapted from existing techniques

used for 1+1 field theories on the half line. The procedure involved the introduction of

suitable “reflection matrices” into the classical transfer matrix. These reflection matrices

needed to obey certain conditions in order for the charges to be conserved, and in involution.

We studied the bosonic sector of open strings on AdS5 × S5, which is given by the

coset SO(4,2)
SO(5,1) ×

SO(6)
SO(5) . Boundary conditions corresponding to Giant Gravitons, D5-branes

and D7-branes were studied. We found that strings ending on “Maximal” Giant Gravitons

and D7-branes were integrable. In contrast, we found that we could not construct non-

local charges for open strings on non-maximal Giant Gravitons. This is unless we imposed

extra boundary conditions which were very restrictive. Some of these conditions agree with

expectations from the gauge theory [11].

For D5-branes, we found that we could only construct the conserved charges for the

SU(2) sector. This is very interesting, since the full bosonic sector seems to be integrable at

one-loop in the gauge theory [12]. Therefore, it seems that integrability is broken at some

higher order in λ, or possibly non-perturbatively, for the full open spin chain. It would be

interesting to see this breakdown of integrability by a direct gauge theory calculation. This

kind of behavior is not unheard of. Breakdown of perturbative integrability was observed

some time ago in the Plane Wave Matrix Model [36]. Nevertheless, we remind the reader

that we have only given evidence for non-integrability. It is possible that the construction

of classical conserved charges is still possible using a different technique.

For the case of the Maximal Giant Graviton, it has been argued that integrability

might be broken at higher loops [21]. This was based on an apparent failure to construct

a Perturbative Asymptotic Bethe Ansatz (PABA) for the SU(2) sector. More specifically,

the problem arose in trying to explicitly construct the two-particle wavefunction at two

loops.

On the other hand, our results indicate that integrability is present at vert strong

coupling for the full bosonic sector. It would be odd if integrability were only realized

at very weak and very strong coupling, but not for general values of λ. Therefore, we
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believe that the spin chain describing open strings on Maximal Giant Gravitons might

indeed be integrable at higher loops. Our results suggest that more effort should be put

into understanding the role of the PABA when boundary conditions are included, and into

looking for solutions to the problems proposed in [21].

Let us mention a possible route to make some progress in this direction. It has been

recently shown in [37, 38], that one can match the low-energy limit of the S-matrix that

enters the PABA, with the quantum S-matrix of the Landau-Lifshitz reduced string action.

It is then very desirable to extend these techniques for open strings. In particular, one would

like to match the PABA reflection matrices studied in [21, 22] with the quantum reflection

matrices that come directly from the reduced sigma model. This can be accomplished by

using the techniques discussed in [39, 40]. This is especially interesting since, in contrast

with the bulk S-matrix, we have seen that the reflection matrices have a classical limit.

Therefore, they allow for a more direct check of the AdS CFT correspondence. In particular,

we have seen that, when restricted to the SU(2) sector, the classical reflection matrix has

a universal form κ ∝ σ3. It would be interesting to understand this from the underlying

spin chains.

Finally, it would also be interesting to apply our techniques to the full PSU(2, 2|4)
sector for the MGG and D7-brane systems. The main complication with this calculation is

the need for a gauge choice in the world sheet. One approach that has been used in the past

for explicit construction of the matrix g, is to use a light-cone gauge in the Poincaré patch

of AdS5 [42]. This in particular is unsuitable for the Maximal Giant Graviton, since it is

located at the center of AdS5. However, once a gauge choice is made, one can study the

boundary conditions on the fermions using the techniques of [41]. Another possible route

would be to expand around a plane-wave background. We think that, technical difficulties

aside, the full open superstring attached to the MGG is classically integrable.
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